Synthesis, Isomer Count, and Nuclear Spin Relaxation of H₂O@Open-C₆₀ Nitroxide Derivatives

Yongjun Li,[†] Xuegong Lei,[†] Ronald G. Lawler,[‡] Yasujiro Murata,[§] Koichi Komatsu,[#] and Nicholas J. Turro^{*,†}

Department of Chemistry, Columbia University, New York, New York 10027, United States, Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan, and Department of Environmental and Biological Chemistry, Fukui University of Technology, Gakuen, Fukui 910-8505, Japan

njt3@columbia.edu

Received May 11, 2012

ABSTRACT -7.3 -7.7 -7.9 -8.1 -75 -83 -85 H.O@K8-10 -71 -7.3 -7.5 -7.7 -7.9 -8.1 -8.3 -8.5 -8.7 -8.9 -9.1

Chemical shift / ppm

 $H_2O@C_{60}$ derivatives covalently linked to a nitroxide radical were synthesized. The ¹H NMR of the guest H_2O revealed the formation of many isomers with broad signals. Reduction to the diamagnetic hydroxylamines sharpened the ¹H NMR signals considerably and allowed for an "isomer count" based on the number of observed distinct signals. For $H_2O@K-8$, 17 positional isomeric nitroxides are predicted, not including additional numbers of regioisomers; indeed, 17 signals are observed in the ¹H NMR spectrum.

Fullerene C_{60} derivatives covalently linked to a nitroxide radical have been synthesized and extensively studied by time-resolved electron paramagnetic resonance spectroscopy (TREPR) in order to probe the interaction between the triplet state of C_{60} and the nitroxide radical.^{1–3} Two common synthetic methods have been used to prepare the

[†]Columbia University.

- ^{II} Fukui University of Technology.
- (1) Arena, F.; Bullo, F.; Conti, F.; Corvaja, C.; Maggini, M.; Prato, M.; Scorrano, G. J. Am. Chem. Soc. **1997**, *119*, 789–795.
- (2) Corvaja, C.; Maggini, M.; Prato, M.; Scorrano, G.; Venzin, M. J. Am. Chem. Soc. **1995**, 117, 8857–8858.
- (3) Sartori, E.; Toffoletti, A.; Corvaja, C.; Garlaschelli, L. J. Phys. Chem. A 2001, 105, 10776–10780.
- (4) Corvaja, C.; Conti, F.; Franco, L.; Maggini, M. C. R. Chimie 2006, 9, 909–915.

10.1021/ol3013155 © 2012 American Chemical Society Published on Web 07/17/2012

 C_{60} nitroxide derivatives: the Prato (fulleropyrrolidines)^{4,5} and the Bingel (methanofullerenes)⁶ reactions.

Due to the availability⁷ of the endohedral $H_2@C_{60}$ in our lab, we have extensively investigated the interaction between the endo- H_2 and the outside environment via nitroxide radicals covalently attached to the $H_2@C_{60}$ cage.⁸ We found that the intramolecular relaxation effect on the endo- H_2 from a nitroxide radical attached with a short

- (7) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238–240.
- (8) Li, Y.; Lei, X.; Lawler, R. G.; Murata, Y.; Komatsu, K.; Turro, N. J. J. Phys. Chem. Lett. **2010**, *1*, 2135–2138.
- (9) Sartori, E.; Ruzzi, M.; Turro, N. J.; Komatsu, K.; Murata, Y.; Lawler, R. G.; Buchachenko, A. L. J. Am. Chem. Soc. **2008**, 130, 2221– 2225.

2012 Vol. 14, No. 15 3822–3825

ORGANIC LETTERS

[‡]Brown University.

[§]Kvoto University.

⁽⁵⁾ Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519-526.

⁽⁶⁾ Bingel, C. Chem. Ber. 1993, 126, 1957-1959.

spacer is much stronger than could be achieved with any realistic concentration of an external relaxant.⁹

Recently, a water molecule encapsulated in a C_{60} cage has been successfully synthesized by the molecular surgery method.¹⁰ The availability of substantial amounts of H₂O@C₆₀ enables us to explore the interactions between the endo-H₂O and the outside environment. We have reported¹¹ the nuclear spin relaxation (T_1) of H₂O@C₆₀ and two of its nitroxide derivatives. A comparison with the corresponding H₂@C₆₀ nitroxide derivatives⁸ indicates that both systems produce T_1 enhancements that are consistent with similar through-space interaction between the internal nuclear spins and the external electron spin. We have also compared¹¹ the nuclear spin relaxation of H₂ and H₂O encapsulated in C₆₀ produced by an external relaxant,⁹ such as TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), and find similar effects for both endo molecules.

Open-form C_{60} derivatives (see Figure 1) were available to us as intermediates in the synthesis^{7,10} of $H_2@C_{60}$ and $H_2O@C_{60}$. An interesting issue is a comparison of the effectiveness of nitroxides attached to the fullerene cage in enhancing the T_1 relaxation of guest H_2 and H_2O molecules. In other words, how does a hole in the C_{60} cage influence the magnetic communication between the internal endomolecule and the external nitroxide radical. However, because of the low symmetry of the open forms, a large number of monosubstituted nitroxides might be formed. This brings up an interesting issue of how many mononitroxides of the open cages are possible and experimentally how many are formed, and how to identify the number of isomers produced in the synthesis.

³He NMR spectroscopy¹² has been employed to provide structural information on complex mixtures derived from bis additions to ³He@C₆₀. Well separated signals were observed over a spectral range of 2 ppm.¹² The excellent separation of the signals shows that the magnetic field experienced by the ring currents of the π -system is exquisitely sensitive to the patterns of attachment of added groups to the C₆₀ surface.¹² The authors point out that ³He NMR is an excellent and sensitive tool for determining the ratio as well and the identity of fullerene adducts.

By analogy with the ³He measurements, we recently reported¹³ that bisadduct isomers of $H_2@C_{60}$ derivatives can be differentiated by ¹H NMR spectroscopy of the endo-H₂. The high sensitivity and short T_1 of ¹H NMR spectroscopy make this a very promising method in identifying $H_2@C_{60}$ derivative isomers.

We synthesized the open-form endohedral C_{60} nitroxide derivatives following the same procedures used for the preparation^{8,11} of H₂@1 and H₂O@1 (Figure 1). The reaction with the open-form C₆₀ yielded a mixture of C₆₀ nitroxide derivative isomers. In the case of H₂O@K8 (Figure 1), a total of 17 isomers, corresponding to 17 distinct double bonds, are possible because the molecule has a symmetry plane across the bridge of the orifice. Additional regioisomers can be formed depending on the orientation of the attached nitroxide group.¹⁴ [A Schlegel diagram is included in the Supporting Information (Figure S1) showing the location of the double bonds and also the rings and bridges in the open forms].

Figure 1. Structures used in this study.

The reaction mixture was purified by column chromatography (silica gel; eluent: toluene/ethyl acetate 19:1, v/v). The starting material was recovered as the first fraction followed by the nitroxide isomers as the second fraction. Mass spectroscopy in FAB+ mode (Figures S2 and S3, Supporting Information) confirms that only monoadduct isomers were included in the second fraction.

The ¹H NMR spectrum for the region from -7 to -9 ppm of the mixture of nitroxide isomers (endo-H₂O region) is shown in Figure 2a. The chemical shifts of the various isomers are distributed over ca. 2 ppm in a region about 2 ppm upfield from endo-H₂O in the parent open fullerene, which is similar in extent and position to what was observed with our previously reported H₂@C₆₀ nitroxide bisadducts¹³ and the NMR¹² of endo ³He in analogous bisadducts. However, because of the broadening effect from the attached nitroxide radical, some of the individual signals overlap and distinct isomers cannot be detected. The broad signals are caused by the paramagnetic influence of the attached nitroxide. The broadness is conveniently removed by reduction¹⁵ of the nitroxides to the corresponding diamagnetic hydroxylamines using hydrazobenzene.

The ¹H NMR spectrum of the mixture of reduced isomers is shown in Figure 2b. Once the nitroxide radical was completely reduced (confirmed by disappearance of

⁽¹⁰⁾ Kurotobi, K.; Murata, Y. Science 2011, 333, 613-616.

⁽¹¹⁾ Li, Y.; Chen, J. Y.-C.; Lei, X.; Lawler, R. G.; Murata, Y.; Komatsu, K.; Turro, N. J. J. Phys. Chem. Lett. **2012**, *3*, 1165–1168.

⁽¹²⁾ Cross, J. R.; Jimenez-Vazquez, H. A.; Lu, Q.; Sanuders, M.; Schuster, D. I.; Wilson, S. R.; Zhao, H. J. Am. Chem. Soc. **1996**, 118, 11454–11459.

⁽¹³⁾ Li, Y.; Lei, X.; Lawler, R. G.; Murata, Y.; Komatsu, K.; Turro, N. J.; Turro *Chem. Commun.* **2011**, *47*, 2282–2284.

⁽¹⁴⁾ Ohba, Y.; Nishimura, M.; Mizuochi, N.; Yamauchi, S. Appl. Magn. Reson. 2004, 26, 117–134.

⁽¹⁵⁾ Li, Y.; Lei, X.; Li, X.; Lawler, R. G.; Murata, Y.; Komatsu, K.; Turro, N. J. Chem. Commun. **2011**, *47*, 12527–12529.

Figure 2. ¹H NMR of endo-H₂O in toluene- d_8 solutions. (a) A mixture of isomers of H₂O@K8-1; (b) a mixture of isomers of H₂O@K8-1D after reduction of H₂O@K8-1 by hydrazobenzene (~10 equiv); (c) expanded spectrum. Each peak is labeled by a black dot. The four sets of doublets with highlights are probably from the regioisomers of each positional isomer.

the EPR signal from the reacted sample), the NMR peaks of the endo-H₂O become narrower and the overlap between distinct signals is diminished. The total peaks found for the endo-H₂O are 17. While it is possible that each peak represents a reaction at one of the 17 double bonds in the starting material, it seems more likely that some of the peaks correspond to pairs of regioisomers arising from the two different orientations¹⁴ of the nitroxide ring relative to the opening in the fullerene. Further separation of each isomer is needed in order to confirm whether the ¹H NMR spectrum of the endo-H₂O is selective enough to differentiate the regioisomers that are due to the variable orientations of the attached nitroxide group. This work is under investigation.

For comparison, we also synthesized the lower symmetry $H_2@K8'$ nitroxide derivative isomers (Figure 1) using the intermediate commonly used for the preparation of $H_2@C_{60}$. The ¹H NMR spectrum of the endo- H_2 is shown in Figure 3a. Up to 30 isomers can be formed for $H_2@K8'$ due to the 30 distinct double bonds arising from the lack of any symmetry element in the molecule. After reducing with hydrazobenzene, 27 peaks were detected in the ¹H NMR spectrum of the endo- H_2 in the reduced products (Figure 3b).

Nuclear spin relaxation (T_1) of some of the isomeric adducts exhibiting the least overlapped peaks of H₂O@-K8-1 and H₂@K8'-1 in toluene- d_8 solution at 300 K was measured at 500 MHz using the standard inversionrecovery method (Tables S1–S4, Supporting Information). The range of values of T_1 is 35–40 ms for isomers of H₂O@K8-1 and 27–31 ms for isomers of H₂@K8'-1, respectively (Table 1). In comparison with the corresponding C₆₀ nitroxides¹¹ (T_1 of H₂O@1: 59 ms; T_1 of H₂@1: 51 ms) under the same conditions, both values of T_1 of both the open-C₆₀ nitroxides are decreased, consistent with the somewhat longer rotational correlation time for the larger fullerene cage. The longer T_1 values for the diamagnetic species (H₂O@K8-1D and H₂@K8'-1D) are similar to those of the corresponding open forms (Table 1), consistent with the previous conclusion that the relaxation of both endo molecules is dominated by the rotational motion of the molecule itself and is insensitive to the slower motion of the cage.¹¹ Careful comparison of the chemical shifts of the best-resolved NMR peaks for the nitroxide with the correpsonding peaks in the hydroxylamine (Tables S1–S4, Supporting Information) reveals an upfield shift of 10–15 Hz for the latter for both endo H₂O and H₂, slightly smaller than the shift of 20 Hz observed previously for the H₂@C₆₀ derivatives.¹³

Table 1. T_1 Values of Endohedral Fullerene Derivatives and Open Forms

compd	$T_1/{ m ms}^a$	compd	$T_1/{ m ms}^a$
H ₂ O@1	$59\ 35{-}40\ 1800{-}2700\ 2500$	H ₂ @1	51
H ₂ O@K8–1		H ₂ @K8'-1	27–31
H ₂ O@K8–1D		H ₂ @K8'-1D	138–160
H ₂ O@K8		H ₂ @K8'	137

^a 500 MHz, room temperature in toluene-d₈.

Further inspection of some of the measurable T_1 values of H₂O@K8-1D indicates four sets of doublet features for which the T_1 's of each of the two components are nearly the same (Table 2 and Figure 2c highlighted). We speculate that these doublets could be due to the two regioisomers of each positional isomer. It might be expected that, compared to the positional isomers, the effect on the reorientational motion of the fullerene, and resulting T_1 values, produced by changing the orientation of the attached nitroxide group should be reduced.

In summary, for the first time, we have synthesized openform $H_2O@C_{60}$ and $H_2@C_{60}$ mononitroxide derivatives

Figure 3. ¹H NMR of endo-H₂ in toluene- d_8 solutions. (a) A mixture of isomers of H₂@K8'-1; (b) a mixture of isomers of H₂@K8'-1D after reduction of H₂@K8'-1 by hydrazobenzene (10 equiv); (c) expanded spectrum. Each peak is labeled by a black dot.

entry	chemical shift/ppm	${T}_1\!/\!\mathrm{s}^a$	
1	-7.303	1.81	
2	-7.841	1.93	
3	-7.861	1.91	
4	-8.007	2.58	
5	-8.038	2.01	
6	-8.050	2.05	
7	-8.261	2.23	
8	-8.301	2.35	
9	-8.589	2.18	
10	-8.629	2.19	
11	-8.878	2.39	
12	-8.885	2.32	
13	-9.248	2.34	
14	-9.282	2.57	

and an array of isomers are detected by employing the 1 H NMR spectrum of the corresponding endo-H₂O/H₂ moieties. Proton relaxation times for the endo H₂O and H₂ are nearly the same for all isomers and differ from the values in

the corresponding C_{60} nitroxides in the direction expected on the basis of the size of the cage. The study demonstrates that the ¹H NMR spectrum of the endohedral molecule (H₂ or H₂O) is an excellent probe in detecting newly synthesized endohedral C_{60} derivatives. We note that the ¹H signals in H₂@C₆₀ or H₂O@C₆₀ fullerenes appear to have an exquisite sensitivity to structure and show signal sharpness similar to that exhibited by the ³He signals¹² in isomeric endofullerene bis-adducts. Most importantly, the high field chemical shift region of the ¹H NMR spectrum characteristic of both endo molecular probes is free of background signals from solvent or nonfullerene impurities.

Acknowledgment. The authors thank the National Science Foundation for its generous support through Grant CHE 11-11398.

Supporting Information Available. Mass spectra, T_1 values of some of isomeric adducts of $H_2O@K8-1$, $H_2@K8'-1$, and $H_2@K8'-1D$, and a Schlegel diagram. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.